The identification of isoprenoids that bind in the intersubunit cavity of Escherichia coli 2C-methyl-D-erythritol-2,4-cyclodiphosphate synthase by complementary biophysical methods.
نویسندگان
چکیده
The discovery of a distinct metabolic pathway, the non-mevalonate or 1-deoxy-D-xylulose-5-phosphate (DOXP) pathway for isoprenoid precursor biosynthesis, in eubacteria and apicomplexan parasites has revealed a new set of potential drug targets. The emphasis of research on this pathway has been on delineating the intermediates and the biochemical and structural characterization of component enzymes. Two new monoclinic crystal forms of recombinant Escherichia coli 2C-methyl-D-erythritol-2,4-cyclodiphosphate (MECP) synthase cocrystallized with (i) CMP and (ii) CMP and MECP show well defined electron density at the subunit interface suggestive of an isoprenoid-like ligand. 31P NMR analysis of the recombinant protein sample indicates the presence of bound diphosphate species and electrospray mass spectrometry identifies a mixture of isopentenyl diphosphate (and/or dimethylallyl diphosphate), geranyl diphosphate and farnesyl diphosphate in an approximate ratio of 1:4:2. The most prevalent species, geranyl diphosphate, was successfully modelled into the electron density, revealing the important protein-ligand interactions that stabilize binding of the isoprenoid. The observation that MECP synthase binds three metabolites that are produced by enzymes two, three and four stages downstream in isoprenoid biosynthesis suggests that feedback regulation of the non-mevalonate pathway is possible.
منابع مشابه
Structure and reactivity in the non-mevalonate pathway of isoprenoid biosynthesis.
The function, structure and mechanism of two Escherichia coli enzymes involved in the non-mevalonate route of isoprenoid biosynthesis, 2C-methyl-D-erythritol 4-phosphate cytidylyltransferase and 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase, are reviewed. Comparisons of each with enzymes from microbial pathogens highlight important conservation of sequence suggestive of similarities in s...
متن کاملCrystal structure of IspF from Bacillus subtilis and absence of protein complex assembly amongst IspD/IspE/IspF enzymes in the MEP pathway
2-C-Methyl-d-erythritol 2,4-cyclodiphosphate synthase (IspF) is a key enzyme in the 2-C-Methyl-d-erythritol-4-phosphate (MEP) pathway of isoprenoid biosynthesis. This enzyme catalyzes the 4-diphosphocytidyl-2-C-methyl-d-erythritol 2-phosphate (CDPME2P) to 2-C-methyl-d-erythritol 2,4-cyclodiphosphate (MEcDP) with concomitant release of cytidine 5'-diphospate (CMP). Bacillus subtilis is a potenti...
متن کاملA double mutation of Escherichia coli2C-methyl-D-erythritol-2,4-cyclodiphosphate synthase disrupts six hydrogen bonds with, yet fails to prevent binding of, an isoprenoid diphosphate.
The essential enzyme 2C-methyl-D-erythritol-2,4-cyclodiphosphate (MECP) synthase, found in most eubacteria and the apicomplexan parasites, participates in isoprenoid-precursor biosynthesis and is a validated target for the development of broad-spectrum antimicrobial drugs. The structure and mechanism of the enzyme have been elucidated and the recent exciting finding that the enzyme actually bin...
متن کاملThe deoxyxylulose phosphate pathway of isoprenoid biosynthesis: studies on the mechanisms of the reactions catalyzed by IspG and IspH protein.
Earlier in vivo studies have shown that the sequential action of the IspG and IspH proteins is essential for the reductive transformation of 2C-methyl-d-erythritol 2,4-cyclodiphosphate into dimethylallyl diphosphate and isopentenyl diphosphate via 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate. A recombinant fusion protein comprising maltose binding protein and IspG protein domains was purified...
متن کاملA Structure-Based Approach to Ligand Discovery for 2C-Methyl-d-erythritol-2,4-cyclodiphosphate Synthase: A Target for Antimicrobial Therapy†
The nonmevalonate route to isoprenoid biosynthesis is essential in Gram-negative bacteria and apicomplexan parasites. The enzymes of this pathway are absent from mammals, contributing to their appeal as chemotherapeutic targets. One enzyme, 2C-methyl-d-erythritol-2,4-cyclodiphosphate synthase (IspF), has been validated as a target by genetic approaches in bacteria. Virtual screening against Esc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta crystallographica. Section D, Biological crystallography
دوره 61 Pt 1 شماره
صفحات -
تاریخ انتشار 2005